RITZ 벡터를 이용한 수정 분할구조해석법

발표자: 김 동욱 *
이 인원**

1. 서론

구조물의 동특성을 파악하는 것은 구조물의 설계, 제작 및 운영에 있어서 필수적인 과정이다. 일반적으로 구조물의 동특성 해석은 유한요소법을 이용하여 수행되었던가. 이때 유한 요소법을 적용하는 해석대상이 복잡하거나, 매우 크다면, 해석에 필요한 시간과 비용이 상당히 증가하게 된다. 이러한 문제를 해결하기 위한 방법으로 분할구조해석법(Component Mode Synthesis:CMS)이 널리 사용되고 있다. 이 방법은 대형 구조물의 해석을 수행할 때, 계산 시간과 기억용량 측면에서 납비요소가 되는 고차모드들을 효과적으로 제거하여 보다 경제적인 해석을 수행할 수 있게 해준다.

그러나 이 방법은 부분 구조의 고유모드 산출 과정을 포함하고 있으므로, 컴퓨터 기억용량의 측면에서는 효과적이지만 계산 시간의 면에서는 개선할 점이 남아있다. 이러한 문제점을 개선하기 위하여, 본 연구에서는 각 부분구조의 고유모드 대신 Ritz 벡터를 사용하여 기존 분할구조해석법의 개선방향을 제시하였다.

2. 이론

분할구조해석법이란 해석하고자 하는 구조물을 여러개의 부분구조로 나누어 모델을 만들고 각 각에 대한 해석결과를 전체 구조물 해석에 이용 하는 방법이다. 그림 1과 같은 전체 구조물중 그림 2와 같은 부분구조를 고려하면 지배 방정식은 식(2.1)과 같다. 첨자 i, j는 각 각 부분구조의 경계와 내부에서의 자유도를 뜻한다.

\[
\begin{bmatrix}
\mathbf{m}_{ii} & \mathbf{k}_{ij} \\
\mathbf{k}_{ji} & \mathbf{m}_{jj}
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_i \\
\mathbf{x}_j
\end{bmatrix}
+
\begin{bmatrix}
\mathbf{k}_{ii} & \mathbf{k}_{ij} \\
\mathbf{k}_{ji} & \mathbf{k}_{jj}
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_i \\
\mathbf{x}_j
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{f}_i \\
0
\end{bmatrix}
\]

(2.1)

\[
\begin{bmatrix}
\mathbf{x}_i \\
\mathbf{x}_j
\end{bmatrix} = \{\mathbf{T}_p\}_r\{\mathbf{q}\}_r
\]

(2.2)

\[
\mathbf{x} \in \mathbb{R}^n, \mathbf{q} \in \mathbb{R}^m, \mathbf{T}_p \in \mathbb{R}^{n \times m}, m < n
\]

분할구조해석법은 먼저 각 부분구조에 대한 변환행렬 \([\mathbf{T}_p]\)을 구한 다음 이를

---

*: 한국과학기술원 기계공학과 석사 2 년
**: 한국과학기술원 토목공학과 교수

-34-
이용하여 지배방정식의 차수를 줄이고, 각 부분구조에서 구해진 축약된 식을 조합하여 전체 구조물의 지배 방정식을 구하는 과정들로 구성된다.

분할구조해석법은 사용하는 변환행렬의 종류에 따라 몇 가지로 분류되어 있으며, 그 중 '이'가 사용 중인 것이 고정계계법이다. 고정계계법은 1960년대에 개발되었으며 변환행렬 \( T_p \)로, 경계가 고정된 부분구조의 고유모드(식(2.3))와 제한모드로 구성되는 Craig-Bampton 모드집합을 사용한다. 제한모드(식(2.4), (2.5))는 부분구조의 접경자유도 중 한곳에서 단위변형을 가하고 나머지 접경 자유도는 모두 고정시켰을 때의 변형행태이다. 이때 내부자유도는 어떤 구속도 받지 않는다. 이것들을 이용하여 변환행렬 \( T_p \)을 구성한다. (식(2.6):\( \{ \phi_i \} = \{ \phi_{ji} \} \), \( \{ \phi_j \} = \{ \phi_{jk} \} \).)

\[
\begin{align*}
(k_{ji})_{jk} &= (m_{ji})_{jk} + \lambda_{kk} \quad (k < j) \\
\left( k_{ji} k_{ji} \right)_{ij} &= \begin{pmatrix} I_{ii} \\ 0 \end{pmatrix} \\
\left( k_{ji} k_{ji} \right)_{ji} &= \begin{pmatrix} F_{ii} \\ 0 \end{pmatrix} \\
\{ \phi_i \} &= -\left( k_{ji} \right)^{-1}_{ij} \{ \phi_j \} \\
\{ T_p \} &= \begin{pmatrix} I_{ii} & 0 \\ \phi_{c} \phi_{R} \end{pmatrix} \begin{pmatrix} x_i \\ q_o \end{pmatrix}
\end{align*}
\]

3 제안 방법

고정계계법의 변환행렬을 보면 구조물의 자유도 수를 줄이기 위해 경계가 고정된 부분구조의 고유모드를 사용하였다. 구조해석 과정중 시스템의 고유진동수와 고유모드를 구하는 과정이 많은 시간을 요구한다는 것은 잘 알려진 사실이다. 그러므로 분할구조 해석법을 수행하는 과정에서 이 시간을 줄일 수 있다면 보다 빠른 수렴특성을 갖는 해석법을 구할 수 있다. 본 연구에서 제안하는 방향은 기존의 분할구조해석법에서 사용하는 고유모드 대신 부분구조의 적절한 Ritz 벡터를 구하여 사용하자는 것이다. 즉 Ritz 벡터를 이용하여, 고정계계법에 사용되는 변환행렬은 식(2.7)과 같이 변형한다. 여기서 하행자 \( R \)은 Ritz 벡터 \( r \)은 \( r \) 번째 부분구조 또한 \( c \)는 제한모드를 뜻한다. Ritz 벡터를 구하는 과정은 그다지 많은 계산 시간을 요구하지 않으므로, 이를 이용한 해석은 상당한 시간적 이득을 줄 수 있을 것이다.

\[
\{ T_p \} = \begin{pmatrix} I_{ii} & 0 \\ \phi_{c} \phi_{R} \end{pmatrix}
\]

4. 예제 및 결과

그림 3과 같은 보-inline 해석 대상 시스템으로 설정하였다. 제안 방법의 유용성을
 알아보기 위하여 이 시스템을 세가지 방법으로 해석하였다. 상용코드인 Adina 프로그램과 고정경계법 그리고 본 연구에서 제안한 방법이 그것들이다. 세가지 해석에서 얻은 결과들은 시스템의 고유 진동수에 대하여 각 경우들을 비교하였다. 표 1과 그림 4, 그림 5는 예시수행 결과이다. 여기서 유용가능한 모드란 Adina 프로그램의 결과와 비교하여 오차가 3% 미만인 모드를 뜻한다. 반복 연산 회수는 원하는 개수만큼의 벡터를 구하는데 필요한 iteration 회수이다.

그림과 표를 통해서도 알 수 있듯이 제안방법은 기존의 방법과 비교하여 같은 정확도에서 전체지배방정식의 크기가 다소 커지는 하지만, 전체 연산회수가 기존방법보다 높지 않았다. 그리고 유용가능벡터의 수를 증가시키기더라도 총연산회수의 비는 더욱 커지는 것을 알 수 있다. 즉 제안방법의 수렴특성이 기존방법보다 높게 우수하다.

그림 1 전체 구조물

그림 2 부분구조들

내부 자유도 (internal dof ; j)

경계 자유도 (interface dof ; i)

그림 3 시스템

표 1 오차 및 연산 회수 비교

<table>
<thead>
<tr>
<th>사용한 벡터 수</th>
<th>유용가능 모드 수</th>
<th>반복 연산 회수</th>
<th>전체 연산 회수 (100회)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>고정경계법</td>
<td>제안방법</td>
<td>고정경계법</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>6</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>7</td>
<td>102</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>11</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>11</td>
<td>167</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>15</td>
<td>202</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>15</td>
<td>252</td>
</tr>
</tbody>
</table>
참고문헌