An Efficient Solution Method of Quadratic Eigenproblems

Man-Cheol Kim, Ju-Won Oh and In-Won Lee

ABSTRACT

An efficient solution method is described to solve the quadratic eigenproblem arising in the dynamic analysis of general structural systems. The modified Newton-Raphson technique is employed to solve the linear eigenproblem which is derived by formulating the quadratic system of equation to a linear one by doubling the order of the system. A test problem is used to assess the performance of the proposed method for generalized eigenproblems. CPU time spent on calculating eigenpairs and convergence are compared with those of the subspace iteration method extended to the complex eigenproblem by Leung, and the results are very good.

1. INTRODUCTION

To determine the free or forced vibration of large dynamic systems, the efficient numerical analysis first requires that an eigenanalysis be performed. The process is low in cost, and straightforward if the damping is proportional, or more generally, if the mass, damping and stiffness matrices satisfy a condition developed by Caughey and O’Kelly(1965). If the system is nonclassical, the eigenanalysis becomes relatively expensive because it is conventionally performed in a space of twice the system’s dimension, and because complex arithmetic is required.

Transformation methods such as QR(Moler and Stewart 1973), LZ(Kaufman 1974) or Jacobi(Veselic 1983) determine all the eigenvalues and the associated eigenvectors. This is not very efficient in situations where only the lowest frequencies are of interest and there is a large number of degrees of freedom. Also transformation methods by their nature modify the initial matrices during the solution process and can not take full advantage of the sparseness of these matrices.

The unsymmetric(Kim and Craig 1988), symmetric Lanczos method(Chen and Taylor 1988) or Arnoldi’s method(Chen 1994) can also be used to perform the eigenanalysis. Although real arithmetic is used during the solution process, the level of the accuracy of the solutions obtained is low.

Gupta(1981) has proposed a solution procedure based on a combined Sturm sequence and inverse iteration technique. In this procedure, the calculation of each eigenvalue requires several factorizations of the matrix \(A - \lambda B\) for various trial values of \(\lambda\). So that it becomes less attractive for systems with a large bandwidth.

Leung(1995) has extended the subspace iteration method for real symmetric eigenproblem to the complex eigenproblem, which is a more efficient alternative than the inverse iteration method. However, as in the inverse iteration method, a large number of complex arithmetic are required in the iteration process, and singularity occurs in triangularization process when a shift value is close to the eigenvalue \(\lambda\).

In this paper, the efficient method for solving a large eigenproblem is developed. In the second section, the basic concept of the proposed method which applies the modified Newton-Raphson technique to a eigenproblem is presented. In the third section, a numerical example is presented to identify the efficiency of the proposed method.

1) Graduate student, KAIST.
2) Professor, Han-Nam University
3) Professor, KAIST.
산하면 다음과 같은 식을 얻게 된다.

\[\mathbf{r}_j^{(k)} = \mathbf{A} \mathbf{y}_j^{(k)} - \mathbf{B} \mathbf{Y}^{(k)} \mathbf{d}_j^{(k)} \]
\[(2.8) \]

여기서 \(\mathbf{r}_j^{(k)} \)는 잔류벡터를 의미하며 \(\mathbf{d}_j^{(k)} = \mathbf{d}_j, \mathbf{y}_j^{(k)} = \mathbf{y}_j \)가 되려면 잔류벡터가 영벡터(null vector)이어야 한다. 이를 위해서 다음과 같은 Newton-Raphson 방법을 적용한다.

\[\mathbf{r}_j^{(k+1)} = 0 \]
\[= A \mathbf{y}_j^{(k+1)} - \mathbf{B} \mathbf{Y}^{(k+1)} \mathbf{d}_j^{(k+1)} \]
\[(2.9) \]

여기서

\[\frac{\mathbf{d}_j^{(k+1)}}{\mathbf{y}_j^{(k+1)}} = \frac{\mathbf{d}_j^{(k)}}{\mathbf{y}_j^{(k)}} + \Delta \frac{\mathbf{d}_j^{(k)}}{\mathbf{y}_j^{(k)}}, \]
\[(2.10) \]

식(2.10)을 식(2.9)에 대입한 후, 비선형항을 무시하고 정리하면 다음과 같은 선형식을 얻게 된다.

\[-A \mathbf{y}_j^{(k)} \mathbf{B} \mathbf{y}_j^{(k)} \mathbf{d}_j^{(k)} \]
\[= A \Delta \mathbf{y}_j^{(k)} \mathbf{y}_j^{(k)} - \mathbf{B} \mathbf{Y}^{(k)} \mathbf{d}_j^{(k)} - \mathbf{B} \mathbf{Y}^{(k)} \Delta \mathbf{d}_j^{(k)} \]
\[(2.11) \]

여기서 \(\lambda \mathbf{y}_j^{(k+1)} = \mathbf{y}_j^{(k)} \mathbf{B} \mathbf{y}_j^{(k)} \mathbf{d}_j^{(k)} \)가 증득근일 때, \(\mathbf{d}_j^{(k)} \)의 비대각 요소들은 영(zero)이다.\(^{[1]}\) 그러므로 식(2.11)의 우변의 두번째 항을 \(\mu \mathbf{y}_j^{(k)} \mathbf{B} \Delta \mathbf{y}_j^{(k)} \)로 근사할 수 있고 식(2.11)을 정리하면 아래와 같다.

\[-A \mathbf{y}_j^{(k)} \mathbf{B} \mathbf{y}_j^{(k)} \mathbf{d}_j^{(k)} \]
\[= A \Delta \mathbf{y}_j^{(k)} \mathbf{y}_j^{(k)} - \mathbf{B} \mathbf{Y}^{(k)} \mathbf{d}_j^{(k)} - \mathbf{B} \mathbf{Y}^{(k)} \Delta \mathbf{d}_j^{(k)} \]
\[(2.12) \]

식(2.12)에서 미지수는 \(n+s \)개 (\(\mathbf{d}_j^{(k)} \)의 \(s \)개 요소, \(\mathbf{y}_j^{(k)} \)의 \(n \)개 요소)이지만 방정식은 \(n+s \)개이므로, \(\Delta \mathbf{d}_j^{(k)} \)와 \(\Delta \mathbf{y}_j^{(k)} \)를 구하기 위해서는 \(s \)개의 방정식이 확 인하요.

추가적으로 필요한 \(s \)개의 방정식은 \(\mathbf{Y}^{(k+1)} \mathbf{B} \mathbf{y}_j^{(k)} = \mathbf{I}_n \)에 Newton-Raphson 방법을 적용하고 비선형항을 무시하여 다음과 같이 얻을 수 있다.

\[\mathbf{Y}^{(k+1)} \mathbf{B} \Delta \mathbf{y}_j^{(k)} = 0 \]
\[(2.13) \]

이 식은 공분산 크로 \(\Delta \mathbf{y}_j^{(k)} \)가 잔류행렬 \(\mathbf{B} \)에 대하여 형 변터 \(\mathbf{y}_j^{(k)} \)에 직교하도록 하므로, 공분산 크로

의 비례적인 차의 계수들로 바꾸어 연 벡터가 가장 효율적으로 구조물의 교유벡터 \(\mathbf{x}_j(\mathbf{j} \in S) \)에 수렴하도록 한다. \(^{[1]}\)

그림(2.13)의 식(2.13)의 의미(가정: \(\mathbf{B}=\mathbf{I} \))

식(2.12)와 (2.13)을 하나의 선형대수 행렬식으로 표현하면 다음과 같다.

\[\begin{bmatrix} \mathbf{A} - \mu \mathbf{y}_j^{(k)} \mathbf{B} - \mathbf{Y}^{(k)} \mathbf{B} & \mathbf{0} \\ -\mathbf{Y}^{(k)} \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{y}_j^{(k)} \\ \Delta \mathbf{d}_j^{(k)} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_j^{(k)} \\ \mathbf{0} \end{bmatrix} \]
\[(2.14) \]

\[\begin{bmatrix} \mathbf{A} - \mu \mathbf{y}_j^{(k)} \mathbf{B} - \mathbf{Y}^{(k)} \mathbf{B} & \mathbf{0} \\ -\mathbf{Y}^{(k)} \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{y}_j^{(k)} \\ \Delta \mathbf{d}_j^{(k)} \end{bmatrix} = \begin{bmatrix} -\mathbf{r}_j^{(k)} \\ \mathbf{0} \end{bmatrix} \]
\[(2.15) \]

이 식은 수렴을 위해서 식(2.14)보다 많은 반복횟수를 필요로 하지만, 일반 계수행렬의 부행렬 \(\mathbf{A} - \mu \mathbf{y}_j^{(k)} \mathbf{B} \)가 각 반복 때마다 항상 일정하기 때문에 연속적인 반복연산에서는 적은 연산량을 필요로 하지 않게 되어 전체적인 해석시간 감소시킬 수 있다.\(^{[1]}\)

3. 계산방법

본 연구에서는 Robinson-Lee 방법을 더욱 개선하기 위하여 accelerated modified Newton-Raphson 방법을 이용하였다. 즉

\[\mathbf{d}_j^{(k+1)} = \mathbf{d}_j^{(k)} + \Delta \mathbf{d}_j^{(k)} \]
\[\mathbf{y}_j^{(k+1)} = \mathbf{y}_j^{(k)} + \alpha \Delta \mathbf{y}_j^{(k)} \]
\[(3.1) \]
식(3.1)에서 $\text{step length}(\alpha)$는 $(k+1)$번째 해석기준에 대한 구조물에 대한 최소화하기 위한 값으로 최소자승법을 이용하였다. 즉

$$\frac{\partial}{\partial \alpha} \left\{ \left(\nabla_{r_j}^{(k+1)} \right)^T \nabla_{r_j}^{(k+1)} \right\} = 0 \quad \cdots\cdots(3.2)$$

$$\alpha = -\frac{\left(\Delta y_j^{(k)} \right)^T (A - \mu^{(k+1)} B) (A - \mu^{(k)} B) \Delta y_j^{(k)}}{\left(\Delta y_j^{(k)} \right)^T (A - \mu^{(k+1)} B) (A - \mu^{(k)} B) \Delta y_j^{(k)}} \quad \cdots\cdots(3.3)$$

제안방법에서 step length(α)를 벡터에 대해서만 적용한 이유는 구조물에 대한 수렴성이 고유벡터의 수렴성보다 훨씬 빠르기 때문이다.

4. 수치해석

제안방법의 효율성을 증명하기 위하여 15층 3차원 빛대 구조물로 대용량으로 해석하였다. 이 구조물의 유한 요소 모델은 그림[4.1]에서와 같이, 315개의 보 요소와 144 개의 연결점으로 이루어지고 총 자유도는 810개, 최대 미봉(max. half bandwidth)은 60이다. 이 구조물의 재료은 그림[4.1]에 표시되어 있다. 해석에 사용된 컴퓨터는 12 mips의 IRIS이다. 제안방법과 Robinson-Lee 방식 그리고 나머지 사용하고 있는 ADINA-84의 subspace iteration 방법과 determinant search 방법을 이용하여 허용 오차정규 10^{-3}까지 10개의 구조지를 구했다. 제안방법과 Robinson-Lee 방법의 초기값들은 ADINA-84의 subspace iteration 방법에서 오차정규 10^{-1}을 만족하는 중간 결과를 이용하였다.

5. 결론

본 연구에서는 accelerated modified Newton-Raphson 방법을 Robinson-Lee 방법에 도입하여 중복근을 갖는 고유치문제에 대한 효율적인 수치해석법을 제안하였다.

즉, 제안방법은 구조물의 고유진동수에 중복근이 존재해서 수치적 불안정성을 가지기 쉬운 경우에도 수치적 안정성을 가지고 구조물의 동특성을 구할 수 있을 뿐만 아니라, 비록 step length 값을 구하기 위해 부가적인 연산을 필요하게 하는 반면 수행시간을 감소시키는 효율적인 고유치 해법이다.

본 연구에서는 구조물의 고유진동수가 극단적인 경우에 대해서도 수치해석을 수행하여 해석결과를 얻어내었으나 지면관계상 여기서는 생략한다.

6. 참고문헌

표[4.1] 하용 오차정규 10^9을 만족하는 10개의 고유치를 구하는 데 소요되는 해석시간

<table>
<thead>
<tr>
<th>Methods</th>
<th>Solution Time(sec) (Ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Method</td>
<td>153.37 (1.00)</td>
</tr>
<tr>
<td>Robinson-Lee Method</td>
<td>160.48 (1.05)</td>
</tr>
<tr>
<td>Subspace Iteration Method</td>
<td>424.13 (2.77)</td>
</tr>
<tr>
<td>Determinant Search Method</td>
<td>560.15 (3.65)</td>
</tr>
</tbody>
</table>

표[4.2] 모우드당 하용 오차정규 10^9을 만족하는 데 소요되는 반복 횟수 (* : α 적용)

<table>
<thead>
<tr>
<th>모우드 수</th>
<th>고유 진동수 (Hz)</th>
<th>Number of Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subspace Iteration Method</td>
<td>Determinant Search Method</td>
</tr>
<tr>
<td>1</td>
<td>0.065</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0.065</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0.094</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0.213</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0.213</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0.284</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>0.403</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>0.403</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>0.481</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>0.584</td>
<td>13</td>
</tr>
</tbody>
</table>

그림[4.2] 3번째 고유치의 수렴 성 비교

그림[4.3] 7번째 고유치의 수렴 성 비교

— 138 —