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Abstract:  Most of the eigenvalue analysis methods for the undamped or
proportionally damped systems use the well-known Sturm sequence property to
check the missed eigenvalues when only a set of the lowest modes is to be used for
large structures. However, in the case of the non-proportionally damped systems
such as the soil-structure interaction system, the structural control system and the
composite structures, no counterpart of the Sturm sequence property for undamped
systems has been developed yet. Hence, when some important modes are missed for
those systems, it may leads to poor results in dynamic analysis. In this paper, a
technique for calculating the number of eigenvalues inside the open disk of arbitrary
radius for the eigenproblem with the damping matrix is proposed by applying
Chens algorithm and Gleyses theorem. To verify the applicability of the proposed

method, two numerical examples are considered.
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1. INTRODUCTION

To obtain the dynamic response of a large
civil structure, it is economic and efficient to
superpose the results of a few lowest modes.
Therefore, there has been proposed many
eigensolution techniques which can find only
a set of the lowest modes. The Lanczos and
subspace method are belong to this type of
technique. In these techniques, however, some
the
calculation process, which may lead to poor

important modes can be missed in
results in dynamic analysis. Hence, a checking
technique for missed eigenvalues is required
in finding the missed one. For the case of
undamped system or proportionally damped
system, it can be easily found by using the
Sturm sequence property [1-4].

the of the

proportionally damped systems such as the

However, in case non-
soil-structure interaction system, the structural
control system and composite structures, no
counterpart of the Sturm sequence property
for undamped systems has been developed
yet [5]. Hence, when some important modes
are missed for those systems, it may leads to
poor results in dynamic analysis.

In this paper, Gleyse’s theorem [9], which
the
characteristic polynomial inside an open unit
disk,

eigenvalues

can count number of zeros of a

to calculate the number of
the
damping matrix. The characteristic polynomial

is used
for  eigenproblem  with
of an eigenvalue problem is determined by
algorithm [10] which
considered as both stable and effective. The
determinants(minors) of the leading principal
in the Schur-Cohn
matrix can be easily calculated by the LDL'
and the final

using Chen's is

submatrices of order i

factorization process result
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obtained is very similar to the Sturm

sequence property for undamped systems.

2. MODIFIED STURM SEQUENCE
PROPERTY FOR DAMPED SYSTEMS

2.1. The equations of motion of damped systems
In the analysis of dynamic response of
structural system, the equation of motion of

damped systems can be written as:

Mu()+ Cu() + Ku(t) =0, (1)
where M ,K and C are the (nx7n) mass,
stiffness and nonclassical damping matrices,
respectively, and u(#), w(#) and w(?) are the
(nx1) acceleration, velocity and displacement
vectors, respectively. To find the solution of
the free vibration of the system, we consider

the following quadratic eigenproblem:

A Mp+ACp+K ¢=0 @)

in which Adand ¢ are the eigenvalue and
of the

eigenvalues for the system with n degrees of

eigenvector system. There are 2n
freedom and these occur either in real pairs
or in complex conjugate pairs, depending
upon whether they correspond to overdamped
or undamped modes.

The common practice is to reformulate the
quadratic system of equation to a linear one

by doubling the order of. the system [6,7]
such as:
¢ CMi¢

[ AR o 1t @)

In general, Mand C nonsingular, that is,
def M)*#0 and det( C)+0, the

equation can be changed to the form of a

-K 0
0 M

o) above

standard eigenproblem:

Ay =y, @)



where

I
-M™'C

e el
-M~K Ag] . (5)
Observing the above Equation (5), when the
mass matrix Mis lumped or banded, the
change to the standard eigenproblem can be
accomplished  without much increase in
computing time. The characteristic polynomial
of Equation (4) can be represented as:
P(A) =det(A4 - AI)

=a, A" +a, A"+ +ad+a,

=$ar=0, 6)
where A is a complex value and
a(i=0,1,-+,2n) are the real coefficients.

2.2. The coefficient of the characteristic polynomial
Chen [10] suggested a stable algorithm to
the the

polynomial of a real square matrix. According

obtain coefficients of characteristic

to his algorithm some given matrix A4:

a a; 1.2n-1 Qi 2n
a ay A2 2n-1 a3 2a
A=
Qap-ty Faper2 Qopet2n-t an-r2n
L 920 922 Qrpant 42,0 ] A7)
can be transformed to A4 :
- q
Ay Ty -4, —4a,
1 0 0 0
A= : : : :
0 0 0
. 0 0 1 0 | . @)

by applying a sequence of Gauss-elimination
When

during

like similarity transformations. some
instability the
transformations, modified algorithm by Chen

numerical occurs

[10] can be used. Since 4 was obtained by

applying similar transformations to 4, the
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eigenvalues and eigenvectors of both A4 and
A are same. The characteristic polynomial of

A, PQQ) =det(A—Al)

observing the transformed matrix

can be obtained by

A, and
the characteristic polynomial is:
P(A) = det(A - AI)
=det(4 — Al)
=" +a, A"+ +ad+a,=0,(a,=1) )
2.3. The number of eigenvalues in an open unit
disk
Gleyse [9] suggested a method of checking
the of

polynomial inside an open unit disk by a

number of real

eigenvalues a

determinant representation.

Let P()= goah/l,, =0 (a, is a real

the

inside the open unit disk can be determined

number) then number

of eigenvalues

as:

N1=2n-5[1,d1,d2,”',dzn] (10)

where N; is the number of eigenvalues in an
open unit disk, 2n is the degree of the
Slk, by, by, oo, ko] the
of sign changes the
k(i=0,1,-,2n) and dJ(i=1,2,,2n) is

polynomial, is

number in sequence

the determinants(minors) of the leading
principal submatrices of order i in the
Schur-Cohn matrix T:
T= L ,
min(i. /)
tij= z/ (a'ln—i¢/la2n—j+h_ai-haj-h)' (11)

2.4. Modified Sturm sequence property.
Gleyse’s theorem [9] considers only about
the number of eigenvalues in an open unit

disk. To apply his theorem for an open disks

of arbitrary radius p, substitute A= oA( o is



an real number) to Equation (6), then:
P(A)=a, p*" 2" +a, p" " A"+ +a,pi +a,
=@ A"+, A T A+ T
=5Sax =0, (12)

where ¢;=q,0'(i=0,1,+,2n) are modified

coefficients.

Using the modified coefficients  q;
(i=0,1,"--,2n) in Equation (12), His
theorem can be extended to calculate the
number of eigenvalues in the open disks of
arbitrary radius p. The calculation of d,
(1=1,2,"+,2n) can be easily performed by
the LDL" factorization of the Schur-Cohn
matrix T. If T=LDL", then:

=LDL; (13)
where T is the leading principal submatrices
of order i in the7, L, is the leading

principal submatrices of order i in the L and

D; is the leading principal submatrices of

order i in theD. Therefore each d,
(1=1,2,---,2n) can be easily obtained as:
d, =deyT) =det(LD,L) = deyD,)

=d, xd, %

xd, = II;I‘ d,, (14)

Considering Equation (10), we only need to

know the signs of each d; because the
unknown  value of S(1,d,,dy, -, dy,]
depends only on sign changes of each
d(i=1,2,+,2n) and from Equation (14)

the signs of each d; can be determined from
the number of negative elements of each
of D, which

sequence

diagonal elements is very

Strum for

undamped systems.

similar to property

3. A NUMERICAL EXAMPLE

To show the effectiveness of the proposed

method, a simple spring-mass-damper system that

~ has the exact analytical eigenvalues is considered
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to verify that the proposed method can exactly
calculate the number of eigenvalues in the open
disk of arbitrary radius for the eigenproblem with
the damping matrix.
3.1. Simple Spring-Mass-Damper System™

The finite element discretization of the system
results in a diagonal mass matrix, a tridiagonal
damping and stiffness matrices of the following

forms:

M=ml (15)
C=aM+ BK (16)

2 -1 ]

-1 2 -1
K=k -1 .

2 -1

L -1 1J (17)

where @ and f3 are the damping coefficients of

the Rayleigh damping. The analytical solutions can

be resulted through following  relationships:
Agmy i =—E&w,+jw;+V 1 =& for i=1,,n (18)
1/ a ,
&=+ 8ol (19)
| m 2i—1 =&
=2 sin 35—/ ol o (20)
where @; and &, are the undamped natural

frequency and modal damping ratio, respectively.
A system with order 10 is used in analysis. The
k and m are 1, and the coefficients, ¢ and 23 ,
of the Rayleigh damping are 005 and 05,
respectively. All the eigenvalues and their radius
from the origin in the complex plane are as in
Table 1. In this example the checking process
performed for open disks of three different radius.



First two cases are for checking in between
eigenvalues. Their location is selected considering
the distances

eigenvalues except for a conjugate eigenvalues,

relative between two adjacent

and two eigenvalues with smaller distances from
the next are selected. The third is for checking the
number of all the eigenvalues of the system. The
radius of the open disk is should be only a bit
larger than the selected eigenvalue to ensure that
the next eigenvalue is not within the open disk.
The Sturm sequence check proposed by Bathe
has used 1.01 times the magnitude of the largest
known eiegnvalue for the eigenproblem without
the damping matrix. However, according to Jung
et al®, the value used by Bathe is too large to
ensure that the next largest eigenvalue is not
within the open disk, and recommended times the
magnitude of the largest known eiegnvalue. In this
example, therefore, the radius o of the open disk
is chosen by 1.005 times the magnitude of the
largest eigenvalue( o=1.005/4|). For each cases the
calculated coefficient of the characteristic polynomial
Z , diagonal element < and and sign of d; are
as in Table I Using the sign of d; Table I, the
number of eigenvalues for each cases are calculated as
followings:
Case 1: p=1.005{4, = 1.8109
N,=2n-S[1,d,,d»,"".d»,] =20—4=16
Case 22 p=1.005145 = 1.9207
Ni=2n—S[1,d.dy, . dp,] =20-2=18
Case 4: 0=1.005]Az| = 1.9875
N;=2n—-S[1,d,,d,,",d>,] =20—-0=20
Referring to Table I, the number of eigenvalues
which open disks of
0=1.005|4,5l= 1.8109, o=1.005]A4l
and p=1.005/Ay| = 19875 are 16, 18 and 20
which are exactly agree with the calculated values.

radius
= 1.9207

Is inside
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As seen from this result, therefore, we verify thaf'
the proposed method can exactly check the
number of eigenvalues inside some open disk of
arbitrary radius.

4. CONCLUSIONS

A technique of calculating the number of
eigenvalues inside an open disk of arbitrary
radius was given. The technique is based on
Chens algorithm and Gleyse’s theorem and
can be used to check the missed eiegnvalues
for the eigenproblem with damping matrix.
By analyzing the numerical examples, it is
verified that the proposed method can exactly
check the number of eigenvalues for distinct
or multiple eigenvalues for damped systems.
The technique by Jung et al. should find
the wvariation of of complex
numbers along a predefined path. Therefore, a

large number of checking points sholud be

arguments

used to obtain accurate result. However, the
proposed method can exactly find the number
of eigenvalues by performing the factorization
process only once. In result, much effort in
finding the number of eigenvalue of larger

structures

with damping matrix can be

eliminated by the proposed method.
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