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Eigensolution Method for Structures Using
Accelerated Lanczos Algorithm
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1. Introduction

Lanczos method''" has been known to be very efficient for the eigensolution method of
structures. To improve the Lanczos method many researchers have studied a variety of
procedures. Erricson and Ruhe® have used shifting techniques to accelerate the Lanczos
algorithm. Smith et al.''"¥ have accelerated the Lanczos method through an implicitly restarted

technique. Gambolati and Putti‘®

employed the preconditioned conjugate gradient scheme in the
L.anczos method.

In the fields of quantum physics, Grosso et al.""’ modified the Lanczos algorithm with powered
operator to obtain the eigenstate of quantum systems. Similar power technique is found in
accelerated subspace iteration method for structural dynamics.‘w”m‘(“) While, the modified
Lanczos method using the power technique is not applied to structural dynamics yet. This paper
applies the modified Lanczos method using the power technique to the eigenproblem of structural

dynamics. In structural eigenproblem. the power technique can be applied to the matrix K™ ‘M.

The matrix K™'M is called dynamic matrix.""
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The modified Lanczos method using the power of dynamic matrix can accelerate the
convergence of the conventional Lanczos method. Four numerical examples are presented to
verify the effectiveness of the matrix—powered Lanczos method. The suitable power of the

dynamic matrix in the method is also presented.
2. Matrix-powered Lanczos method

In the fields of quantum physics, Grosso et al."” modified Lanczos recursion by introducing the

second power of operator to accelerate the convergence as follows:

b,.f

n+l" el

= (H - E,)Zf" - anfn - bnfn»] (1 )
where H is a given operator, f is basis functions, a and b are coefficients and nis Lanczos step
number. E, is trial energy which corresponds to shift in structural dynamics. The concept of
power technique in (1) can be applied to the eigenproblem in structural dynamics. The

eigenproblem of structure frequently encountered in structural dynamics can be expressed as
K, =AM¢, (1=12,3,---,n) (2)
where M and K are symmetric mass and stiffness matrices of order n, respectively. 4;and ¢, are
the #th eigenvalue and associated eigenvector of the system. To get the solution of (2), Lanczos

schemed Ritz bases vectors through Gram—Schmidt orthogonalization of Krylov sequence as

follows: '™
i
-1
X, = (K;M)x, =Y vx, (3)
j=1
where x, is a starting vector, x, is jth Lanczos vector, v, is the component of v, along x;, K, =

K—-uM and u is shift. The concept of power technique can be applied to the dynamic matrix in

(3), then following modified Gram—Schmidt orthogonalization can be introduced.
X, = (K;M)’Yx, - Y ux, (4)
J=t

Where & is positive integer. (4) means that an approximated eigenvector, whose number of
iteration is &7 is contained in (/+1) Lanczos vectors. Whereas, in (3), (/+1) Lanczos vectors
contain an approximated eigenvector whose number of iterations is 7 Therefore, (4) gives a

better solution than (3). From (4), modified Lanczos recursion can be derived as
X, = (K M)’x, —ax, - B, X, )
where a; and g, are scalar coefficients obtained by
a, =x,’M(K;'M)5 x,. B, =FMX)"” (6)
then the next Lanczos vector is

X, =X/p (7)
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With a set of Lanczos vectors, X = [x; x, - x,], we can obtain the tridiagonalized standard

eigenproblem of reduced order ¢ << n

Té, = (/4 - 1)*)9, (=1,2,3,-,9) (8)
where
al ﬂl
B a, B, ©)
T=X"M(K,M)’X =
aq~l ﬁq—]
ﬂq-l aq

The Lanczos algorithm is subjected to loss of orthogonality of Lanczos vectors due to round-—
off errors. In this paper, full reorthogonalization process‘” is used to retain the orthogonality of
the Lanczos vectors. The number of total operations for the matrix—powered Lanczos algorithm
is

4
N =(1/2)nm’ +(g* +498 +5q +3/2)nm +{(3/2)q* + 96 +(17/2)g}n +10g* +q+y 6js, (10)

J=2

where 7 is system order, m half~bandwidth, ¢ the number of calculated Lanczos vectors and s,

the number of iterations of jth step in QR iteration for the eigenvalues of tridiagonal system.
3. Numerical examples

A simple spring—mass system with 100 DOFsm, a plane framed structure'”, a three-—
dimensional frame structure®” and a three—dimensional building frame®’ are analyzed to verify
the effectiveness of the matrix—powered Lanczos method. With the predetermined error norm of
107% the number of operations for calculating desired eigenpairs is compared. To examine the
suitable power of dynamic matrix, numerical examples are analyzed with varying power of

dynamic matrix. System matrices of a simple spring—mass system are

2 -1
-1 2 -1
MoLK-| 1 - (11)
2 -1
-1 1

The geometric configurations and the material properties of a plane framed structure, a three—

dimensional frame structure and a three—dimensional building frame are shown in Figs. 1 ~ 3.
Some results are shown in Table 1 and Fig. 4. The 1st power (5§ = 1) corresponds to the

conventional Lanczos method. Table 1 and Fig. 4 show that the convergence of the matrix~

powered Lanczos method is better than that of the conventional Lanczos method. However, in
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some cases, high matrix power causes failure in convergence due to the numerical instability.
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Fig. 1. Plane framed structure (DOFs: 330)
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Fig. 2. Three-dimensional frame structure (DOFs: 468)
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Fig. 3. Three-dimensional building frame (DOFs: 1008)
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Table 1. Number of operations for calculating desired eigenpairs

Structure No. of eigenpairs 5=1 5=2 5=3 §=4
2 38663 29823 26954 23653
Simple spring-mass 4 78922 58529 47567 44122
6 120458 85712 73040 69391
system 8 157649 117587 103055 99550
10 214729 154418 138122 *
6 10908273 7429050 7072452 6633536
Plane framed 12 20855865 13578945 11688377 11237625
structure 18 27029145 18676209 16508507 16047093
24 31581179 22516533 20164797 *
30 102944376 65994807 54112986 *
10 71602154 50687925 48705515 46214349
Three-dimensional 20 181780512 124269611 116680070 108715163
frame structure 30 307269560 215884077 192064376 182518601
40 684162222 453454527 378770940 356596304
50 1024104917 656188310 553972908 504420108
20 395079020 278717178 * *
Three-dimensional 40 1196316954 801878160 * *
building frame 60 3045578295 1993108128 * *
80 3398746793 2509125474 * *
100 3536190824 3625240574 * *
* convergence failure
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Fig. 4. Number of operations for calculating desired eigenpairs
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4. Conclusions

This paper investigates the applicability of the matrix—powered Lanczos method to the
eigenproblem of structures. The characteristics of the matrix—powered Lanczos method by the
numerical results from examples are summarized as follows:

(1) Since the power of the dynamic matrix can reduce the required number of Lanczos vectors,
the matrix—powered Lanczos method has not only the better convergence but also the less
operation count than the conventional Lanczos method

(2) The suitable power of the dynamic matrix that gives numerically stable solution in the

matrix—powered Lanczos method is the second power.
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