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A new multiobjective optimization technique is proposed. When two or more objective func-
tions exist, the most important objective function is adopted as the primary criterion and the
other objective functions are transformed into the constraints by imposing upper or lower
limits on them. The multiobjective optimization then can be treated as the single-objective
optimization. The initial vectors are generated in the feasible region independently, if the
feasible design region defined by the constraints is convex. This technique makes it possible
to adopt the parallel processing in the multiobjective optimization. The proposed mul-
tiobjective optimization technique combined with the parallel processing is very efficient be-
cause there is no increase of the total solution time regardless of the increased number of
Pareto optimal solutions. As examples for demonstration of the proposed approach and its
applicability, the design of a Fbeam and a steel box girder bridge is presented.

Keywords : multiobjective optimization, parallel processing, initial value
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1. Introduction

So far there have been many develop-
ments in the field of structural optimization.
However it is not easy to apply the optimi-
zation techniques developed to the design
of real structures. In real structural design
there are many objectives (possibly con-
flicting) such as minimum cost, minimum
deflection, maximum reliability, minimum
dynamic response and so forth. So, it is
necessary to consider simultaneously all
types of objectives for the optimization of
overall structural system. As an alternative
approach to these practical problems, multi-
objective optimization has been studied for
decades and known to offer reasonable solu-
tions.

Multiobjective optimization simultaneously
optimizes all the objective functions con-
sidered within the design region defined by
constraints. Usually because there are sev-
eral competing objectives that have each op-
timal design value respectively, the results of
multiobjective optimization cannot be further
improved without impairing some of the
objectives. The solution sets with this pro-
perty are called the Pareto optimal solu-
tions after Italian economist Pareto.” For
three decades the Pareto concept was used
in the engineering fields like operations re-
search, control theory and structural design
optimization.

Several approaches have been proposed
to solve the multiobjective optimization pro-
blems: weighting method: €-constraint ap-
proach: goal programming approach: game
theory approach. The weighting method®
transforms the multiobjective function to a
single-objective function through a set of re-
lative weighting of the objective functions.
The entire Pareto set then can be generated
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with the variation of the weights. However,

" because the characteristics of the Pareto

set are unkown, it is difficult to determine
beforehand the variations of the weights.
Both the game theory approach® and the
goal programming approach” produce op-
timal design which minimizes the newly de-
fined criteria: supercriterion in the game theo-
ry: deviations from the set goals in the goal
programming,

Among these, the e-constraint approach is
known to be efficient in obtaining the Pareto
optimal solutions. This approach was used
by Cohn et al.” for the multiobjective opti-
mization of prestressed concrete structures
and by Carmichael® for the multiobjective
optimization of five bar planar truss. However,
it is very difficult to select the initial design
value inside the feasible region. To avoid
this difficulty in practical work, optimization
is usually conducted successively: the pre-
vious optimization result is used as the initial
design value because this design value is in
the feasible region anyway. Hence, the total
solution time is increased linearly with the in-
creased number of the Pareto solutions.

The main purpose of this paper is to obtain
the Pareto optimal solutions in efficient way
by improving the e-constraint approach.
When two or more objective functions exist,
the most important objective function is
adopted as the primary criterion and the
other objective functions are transformed
into the constraints by imposing upper or
lower limits on them. The multiobjective op-
timization then can be treated as the single-
objective optimization. If the feasible design
region defined by the constraints is convex,
the initial vectors are generated in the feasi-
ble region independently. So, the parallel
processing can be used in the proposed
multiobjective optimization technique. If the
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multiobjective optimization can be performed
with the parallel processing technique, there
is no solution time increase regardless of the
number of the Pareto solutions.

The following sections of this paper deal
with the €-constraint approach and the pro-
posed approach, and numerical examples are
presented to demonstrate the validity and the
applicability of the proposed approach.

2. Multiobjective Optimization
The multiobjective optimization problem

with more than two objective functions can
be formulated as

Minimize F=[f1(X),f2(X),,fm(X)] (1)
subject to gX)<0 j=1,2,--,] (2)
hX)=0 n=12---,N (3

where F is a vector of objective functions and
f's are the objective functions to be mini-
mized. Any optimization problem can be writ-
ten as equations (1) to (3) since some ob-
jective functions to be maximized can be con-
verted into objective functions to be mini-
mized. Equations (2) and (3) represent in-
equality and equality conditions respectively.
In general there is no single optimal solu-
tion that simultaneously minimizes all m
objective functions. Instead, there is a set
of solution, so called the Pareto optimal
solutions as shown in Fig. 1. The Pareto op-
timal solutions of the multiobjective optimi-
zation with two objective functions, f, and f;
are on the bolded curve. If f; is to be in-
creased, then f; must be decreased along
the curve and vice versa.

This information may be very helpful in
determining the final design. For example,
one may decrease the most important ob-
jective function by increasing other less im-
portant objective functions. In addition. it
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Fig. 1. Pareto optimal solutions.

helps engineer choose the levels of limits in
case that some limits on the design values
are not available in design code.

3. e-constraint Approach

Among several techniques, the &-constraint
approach is known to be efficient in obtaining
the Pareto optimal solutions. In the &-con-
straint approach, the multiobjective optimi-
zation problem showed in equations (1), (2)
and (3) is transformed into a single-objective

optimization problem as
Minimize £X) (4)
subject to £X)sg i=12,---,m@Ep) (5
hha(X)=0 n=12,---,N )

The strategy of this approach is very simple.
Restricting (m-1) secondary objective func-
tions with equation (5), single-objective op-
timization is conducted within the reduced
design space. A Pareto optimum then will be
found on the bolded curve as in Fig. 1. The
next step optimization to find another Pareto
optimium is done with a little bit increased
upper limits and the current step Pareto op-
timum being the initial value, because the
current Pareto optimum is in the feasible re-



gion. The adequate € values in eqution (5) are
bounded as

fiXD<gstXp) =12, m(p) 8

where X* and X,* represent the optimal
design vectors corresponding to the i-th and
p—th objective functions respectively. Finally
the desired number of the Pareto optimal
solutions can be found in several repetitions
of this process.

The inefficiency of this approach may be
caused by the successive optimization. When
a large number of the Pareto optimal solution
are required in practical purpose, the total
solution time is increased according to the
number of the Pareto optimal solutions.

4. Proposed Approach

When a lot of Pareto optimal solutions are
required, much computational effort is
necessary in the €-constraint approach be-
cause the optimization must be performed
successively. However, if initial values
could be obtained independently, each Pareto
optimal solution can be found independently
by using parallel processing. To make this
idea available, the proposed approach
transforms equations (4) to (7) into equations
(9) to (11) as follows.

Minimize £ (X) 9
subject to
X)) <Xy i=1,2,---,m(*p) 10)
gX)=0 i=1,2,---,) a1
h{X)=0 n=12,--- N (12)

where f, is a primary objective function and
f's are the secondary objective functions.
That is, the upper bounds of the secondary
objective functions are their initial function
values. The initial vector X, in equation (10) is
obtained by using the singleobjective opti-

-554-

mization results as in equations (13) and (14).

xo‘—‘zcixi‘ (13
2=l (14)

where X;* is a design vector which minimize
fiX) . One can easily show that the initial
vector X, is in the feasible design region, if
the region defined by the constraint
equations (11) and (12) is convex. Therefore
the initial vector X, can be directly used in
optimization technique like the modified
feasible direction method. One of the key-
points of this paper is that the initial vector
can be obtained efficiently with above
manner.

The solution scheme of the proposed
approach is as follows: An initial vector is
first produced in equations (13) and (14)
with arbitrary c¢'s. Then the transformed
optimization problem of equations (9) to (12)
is solved through the modified feasible
direction method. Because the initial vector
can be produced independently, the Pareto
optimal solution can be also found in-
dependently. The efficiency of computational
effort is high-lighted when this approach is
combined with the parallel processing
technique.

The overall comparison between the &-con-
straint and the proposed approach is des-
cribed in Figs. 2 and 3. The feasible design re-
gion is reduced by arbitrarily chosen & value
in the e-constraint approach, and the Pareto
solution is found with the initial vector being
the Pareto solution found in the previous
stage. The next Pareto solution can be found
with a little bit increased € value and the
current step Pareto solution. While in the pro-
posed approach, the initial vectors are cal-
culated by using the convex combination of
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Fig. 2. Strategy of the e—constraint approach.
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Fig. 3. Strategy of the proposed approach.

vectors which are obtained in the single-
objective optimzations. Then each initial
vector determines the upper limits of secon-
dary objective functions, and the desired
number of the Pareto solution is found in
parallel.

5. Numerical Examples

5.1 I-beam Design

The [ beam used in Reference 1 is adopted
as the first example. It is to be designed for
two objective functions: the cross sectional
area and the midspan deflection of beam. The
design variables are the web depth h, flange
width b, web thickness t, and flange thick-

164 HI-5H - 19%6F 97

h| & - E:Tj,
i_ré -
,W
Fig. 4. Simply supported I-beam.

ness t;.

The constraints considered are strength
constraints and geometric constraints. The
mathematical statement of the optimum
design problem can be written as

Minimize £, (X) = 2bt;+tw (h—2t) (15)
£, (X) = PL/48El (16)

where

- tw (h— 2t + 2bt [4t? + 3h(h —2t) |

I D an

subject to # <o (18
va

m <% 19

10<h<80, 10<b<50 (20)

09<t,<5, 09<4<5 21

where P=600 kN: L=200 cm: E=204.08 MPa:
c,=186.4 MPa: 1,=107.8 MPa, M and V re-
present the maximum moment and shear
force respectively. Equations (18) and (19)
represent the normal and shear stress con-
straints respectively. Equations (20) and
(21) represent the geometric constraints to
limit the design variables in centimeters.

The modified feasible direction method im-
plemented in ADS"" was used to obtain the
optimal design of each objective function.
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The design vector which minimizes the ob-
jective function f; is X;*=(h=73.21, b=13.44,
t,=0.9, t=0.9) in cm and f,(X,*) =88.45 cm”.
At this point midspan deflection is f,(X;*)=
0.0849 cm. The minimization of midspan de-
flection yields the optimal design vector X,
=[h=80, b=50, t,=5, t;=5) in cm and f,(X,*)
=0.0059 cm. At this point cross sectional
area is f;(X;") =850.0 cm?

The set of Pareto optima is obtained by
both the &-constraint and the proposed ap-
proach. The previous Pareto point is used as
the initial design vector of the &-constraint
approach, but equation (22).the special case
of equations (13) and (14), is used for initial
vector calculation of the proposed approach.

The results of the &-constraint and the
proposed approach are given in Table 1 and

Table 1. Pareto optimal solutions of i-beam (the &-
constraint approach)

f f, h b tw te
(em® | (em) | (em) | (em) | (cm) | (cm)

290.60 | 0.0138 | 80.0 | 37.27 0.9 3.005
199.46 | 0.0217 [ 80.0 | 27.92 0.9 2.359
157.78 | 0.0296 | 80.0 | 22.74 0.9 1.964
133.49 | 0.0375 | 80.0 | 23.01 0.9 1.390
118.27 | 0.0454 | 80.0 | 19.67 0.9 1.233
107.74 { 0.0533 | 80.0 | 15.51 0.9 1.223

99.96 | 0.0612 | 80.0 | 11.92 0.9 1.269
93.87 | 0.0691 | 80.0 | 10.42 0.9 1.148
89.00 | 0.0769 | 790 | 10.00 09 0.935

Table 2. Pareto optimal solutions of I-beam (the
proposed approach)

f f; h b tw te
(emd | (em) | (em) | (em) | (em) | (em)

0.1 | 560.40 |0.00694} 80.0 | 50.0 0.9 | 4974
0.2 | 472.15 {0.00812| 80.0 | 50.0 09 | 4078
0.3 | 395.87 |0.00971| 80.0 | 50.0 09 |3298
0.4]331.60 {0.0118 | 80.0 | 45.17] 09 | 3.000
0.5 275.02 (0.0147 | 80.0 | 36.96 | 09 | 2815
0.6 ] 22419 [0.0187 | 80.0 | 32.00 | 0.9 | 2.447
0.7 ] 180.00 |0.0247 | 80.0 | 2721 | 0.9 | 2.053
08114229 {0.0342 | 80.0 | 2213 09 | 1.656
0.9 110.74 (0.0508 | 80.0 | 16.59 | 0.9 | 1.234
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2, and plotted in Fig. 5. Fig. 5 shows that
the proposed approach can give the Pareto
optimal solutions on the curve.

Xo=cX;+(1-0)X;, ce[0,1] (22)

5.2 Steel Box Girder Bridge Design

The steel box girder bridge in Fig. 6 is to
be designed for the minimizations of both
the cross sectional area and the maximum
deflection of bridge. The bridge girder con-
sists of three steel boxes and supports rein-
forced concrete slab on it. The bridge has
four design lanes of 3.5 m width each. All
dead loads are included in the design of
steel box. Live load by standard truck is
described in Fig. 6. The constraints include
all requirements of the Korea Highway
Bridge Design Code (1992). Design variables
are the flange width B, web depth D. bot-
tom flange thickness ty, upper flange thick-
ness t,s and web thickness t,. Design loads
are calculated through all the possible load
cases and the influence lines over the span
and width of bridge. The allowable stresses
of steel are 1900 kg/cm’ in both com-
‘pression (6,,) and tension (6,), 1100 kg/cm®
in shear (1)), and the Young's modulus of
steel (E,) is 2.1x10° kg/cm®”.

0.10 -
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0.08 -
—_ - ° @  Proposed approach
g he S {  Constraint approach
_8 006 4 o QO  single optimum
2 q s
% 4 e
2 0.04 ] 3
£ ] %
o — .
0.02 A .
] ©
- * .
— * o
0.00 T T T T T
0 250 500 750 1000

f(X). Area(cm?)
Fig. 5. Pareto optimal solutions of i-beam.
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The multiobjective optimization problem
can be formulated as

Minimize f,(X)=B (t,;+t,)+2Dt (23)
LX) =4, (X) (24)

subject to # -0u<0 (25)
2 - ga<0 (26)

YO _ <o (27

Tt
2 2
[""‘} +[%] ~12<0 (28)

2

.Zg.ﬁ_l—tbfso (29)

%(B—tw—zo)——t“fso (30)

%_;wgo (31)
80

x

(a)

_ 19.5 N

") 2'75 7.0 *_.___.7,'.(.)____*2_15_”
B

I H . » 025
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D ’./ -l
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L N
(b)
ﬂ W=24ton
l‘— 42 42
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(c)
Fig. 6. (a) Two-span continuous steel box girder
bridge: (b) Cross section of Bridge: (c)
Standard truck load [dimension in meter).
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where f=0.65(¢/n)*+0.13(¢/n)+1.0 in which ¢
is the stress distribution factor, and n is the
number of channel divided by ribs. The
objective functions of equations (23) and (24)
represent the cross sectional area of a steel
box and the maximum deflection of bridge
respectively. The constraints of equations (25)
to (27) are to assure that the stresses in steel
do not exceed their allowable limits. Equation
(28) represents the stress combination con-
straint required in the Korea Highway Bridge
Design Code. Equations (29) to (31) represent
minimumn thickness constraints of web and
flanges. The geometric constraints for con-
structibility, machinability and repair are con-
sidered in the optimization; the lowere limits
of B and D are 200 and 180 cm respectively,
and those of ty, ty and t, are 1.0 cm’s: the
upper limits of both B and D are 300 cm’s,
and those of ty. tyand t, are 3 cm's.

The minimization of the cross sectional
area of a steel box yields the optimal design
vector X,*=(B=200.0: D=2231: t,~=2.464: tu=
2.207: t,=1.716) in cm, and f,(X,*) =1699.8 cm’.
At this point maximum deflection of bridge is
f,(X")=5.849 cm. The minimization of the
maximum deflection fo bridge alone yields
the optimal design vector X*=(B=266.0: D=
300.0: t,=3.0: ty=3.0: t,=3.0) in cm, and f;
(X,*)=1.824 cm. At this point cross sectional
area of a steel box is f,(X;*) =3378.0 cm’.

Multiobjective optimization is done by both
the e—constraint and the proposed approach.
The previous optimal design vectors are used
for the e—constraint approach in which € is in-
creased equally, and initial vectors are pro-
duced by equation (22) with nine different c
values for the proposed approach. The
results of multiobjective optimization are
given in Table 3 and 4, and plotted in Fig. 7.

In this example, the maximum deflection
of bridge is under the allowable limit sug-
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Table 3. Pareto optimal solutions of the steel box girder bridge (the e-constraint approach)

£, (cmd f, {cm) B (cm) D (cm) ty (cm) tyr (cm) t, (cm)
2700.1 2.226 2355 300.0 2.703 2.888 2.307
2413.8 2.629 206.3 300.0 2.390 2.600 2.307
2219.1 3.031 200.0 295.4 2.193 2.193 2.21M
2096.4 3.434 200.0 281.4 2.196 2.196 2.164
1995.4 3.837 200.0 269.4 2.198 2.198 2.0M
1910.8 4.239 200.1 258.8 2201 2.201 1.990
1838.7 4.642 200.1 249.5 2.203 2.203 1.919
1776.4 5.045 200.1 241.2 2.204 2.204 1.855
1722.1 5.447 200.1 233.6 2.206 2.206 1.797
Table 4. Pareto optimal solutions of the steel box girder bridge (the proposed approach)
c f, (cm? f, (cm) B (cm) D (cm) tyr (cm) ty (cm) t, (cm)
0.1 2891.1 2.021 255.6 300.0 2.896 3.000 2.307
0.2 2684.5 2.246 234.4 300.0 2.679 2.869 2.307
0.3 2494.1 2.503 216.6 300.0 2.467 2.656 2.307
04 2318.5 2.797 200.0 300.0 2.244 2.427 2.307
0.5 2185.0 3.136 200.1 2915 2.195 2.195 2.242
0.6 2071.3 3.527 200.0 278.4 2197 2.197 2.141
0.7 1963.2 3.982 200.0 265.4 2.199 2199 2.041
0.8 1860.7 4511 200.0 252.4 2.202 2,202 1.941
0.9 1763.9 5.120 200.0 239.5 2.204 2.204 1.842
6o . sumlng.
n o L ] Proposed sppreach )
(o] ons! approa n
T so-d ¢ O o —— 6. Conclusions
g - )
% 40 - oo . 4 . e .
& °$ A new multiobjective optimization tech-
- ]
9 40 4 ° nique is proposed. It is shown that a large
< .
% — e . number of Pareto optimal solutions can be ob-
20 * o tained efficiently with the proposed approach.
1o 7] Because the proposed approach generates an
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f(X), Area(cm’)
Fig. 7. Pareto optimal solutions of steel box girder
bridge.

gested in the Korea Highway Bridge Design
Code (span/500=8 cm). So the objective for
the cross sectional area can be mostly de-
creased according to the curve in Fig. 7.

Both two approaches give nine Pareto

optimal solutions well, but the proposed ap-
proach is more efficient and less time-con-
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initial vector independently of the Pareto solu-
tion found in the previous stage, it is possible
to adopt the parallel processing technique in
multiobjective optimization. If the parallel pro-
cessing technique is used in finding the
Pareto solutions, the total solution time can
be dramatically decreased.

Examples of I-beam and steel box girder
bridge design show how the objective func-
tions are sensitive to each other. Designer
can choose the final design with this in-
formation. Especially, one can decrease im-
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portant objective function by sacrificing less
important objective functions in the choice
level: the objective for maximum deflection
is quite below the requirement of the Korea
Highway Bridge Design Code in the steel
box girder design example, so the objective
for cross-sectional area can be minimized to
its true minimum point while the objective
for deflection is a little bit increased.
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