Vol. 3, No. 4 / December 1999
pp. 331 ~ 338
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Structural Vibration Control Using Artificial Neural Networks

By Ju-Tae Kim*, Ju-Won Oh** and In-Won Lee***

Abstract

Structural control using neural networks is presented. A cost function comprised of control energy and
controlled response is defined to train controller neural network. In the model based optimal control, exter-
nal disturbances and non-linearities cannot be considered. However these limitations can be overcome in
the response based neuro-control algorithm. Not only linear structure but nonlinear structure can be easily
controlled via proposed technique. Numerical example shows that the controller can suppress the vibration
induced by not only trained earthquakes but also untrained ones.
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1. Introduction

Artificial neural networks (ANNs) have been wi-
dely used in the field of structural engineering in
recent years. Especially, vibration control using neu-
ral networks has been a new research topic for struc-
tural control engineers during last decade. Some
characteristics of neural networks appealing to con-
trol engineers are non-linearity, parallelism, and lea-
ming capability. Although modem control theories
have been well established in electrical engineering,
they cannot be directly applied to civil structures
due to some problems such as non-linearity, uncer-
tainty and time-varying properties in them. These
problems necessarily make neural networks a prom-
ising tool for the control of civil structures.

Pioneering studies by H. M. Chen er al. (1995)
and J. Ghaboussi ez al. (1995) show that neural net-
works can be successfully applied to the control of

............................................................................................

large civil structures. The vibration of nonlinear
structures showing hysteretic behavior has also been
controlled via nonlinearly trained neural networks
(K. Bani-Hani er al. 1998).

In their studies, controller neural networks, so
called neuro-controller, are trained via certain crite-
ria. H. M. Chen et al. defined instantaneous error
function as the summation of error between actual
and desired responses. Then, training rule of neuro-
controller is derived by minimizing the error func-
tion. They set the desired response in cost function
to be zero, which means that structural responses
should disappear in one time step. J. Ghaboussi et
al., however, used algorithm which aims the average
of expected responses for a few future time steps to
be zero. This scheme is for the smooth reduction of
structural responses. Although the desired response
can be set by some strategy, the selection of desired
response is not straightforward, and it may not be
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optimal. To avoid this problem, a new algorithm
which does not require desired response is needed.

To this end, a cost function is defined in this study.
Then, training rule for neuro-controller is derived by
minimizing the cost function. There is no need to set
the desired response at each training step. The con-
troller trained by this scheme can be said to be opti-
mal neuro-controller because the cost function is
minimized after training. The advantages of optimal
neuro-controller can be summarized as: 1) it can be
simply applied to non-linear structures; 2) it can
consider external excitations such as earthquake
ground motions. In conventional optimal control, li-
nearization procedure is needed for the control of
non-linear structure (J. N. Yang 1994). Moreover
external disturbance cannot be considered in the
design of optimal controller.

In numerical examples, the earthquake-induced
vibrations of both a linear and a nonlinear structure
are controlled by neural networks trained via pre-
defined cost function. Results show that structural
vibration can be reduced successfully.

2. Learning Algorithm for Controlier Ne-
ural Network

Block diagram for the control of structural vibra-
tion is shown in Fig. 1. Emulator neural network
(ANN 1) is first trained to simulate the structural
response for the same input signal as applied to the
structure. Then it is used to obtain sensitivity infor-
mation of the structural responses. Controller neural
network (ANN 2) is then trained to suppress undes-
ired vibration induced by external disturbances such

l LEARNING RULE Ig-_-"-{ ANN 1 (emulator) l---

5
/7 H
i i
ANN 2 (controller) STRUCTURE I-———->
’I
I-‘li“.l 1 { LOADS I
=}
e signal flow for control --~-- signal flow for training
Fig. 1. Block diagram for structural control using neu-
ral network
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as wind and earthquakes. The training rule updates
the weights of the controller with the help of the
information on the sensitivity of the structural res-
ponses to control force and control force itself.
Weight updating criterion is to reduce the cost func-
tion defined by Eq. (1).

I = % N G ox +u"Ru)dt )

where x,u are state vector, control force vector
respectively, and Q, R are weighting matrices. The
discrete form of Eq. (1) can be written as Eq. (2)
where At is time increment for analysis and control
and Tyis the total time step considered.

G, T - T -
= 2, 51x(n) Qx(n) +u(n) Ru(n)}At )
n=0

Because the state, x and control force, « are the
implicit and the explicit function of the weight of
the controller neural network, }T, can be minimized
through appropriate weight modification. There are
two types of learning mode. One is pattern learning
and the other is batch learning. Weights are updated
at each time step in pattern learning mode. There-
fore instantaneous cost function, }n, is minimized.
Weights are updated once for all time steps in batch
learning. Global cost function, }Tf, is minimized in
this mode. The former mode is related to instanta-
neous optimal control and the latter scheme to con-
ventional optimal control. In this paper, pattern
learning mode is used for weight updates. Although
7 is minimized in pattern learning mode, 7 T, can be
minimized. This is shown in numerical examples.

Neural network model with one hidden layer is

Fig. 2. Neural network with one hidden layer
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shown in Fig. 2. Inputs to the neural network are
feedback information including delayed signals of
structural response and ground acceleration. Out-
puts are the control forces. Weight between the k-th
output node and the j-th hidden node is denoted by
W,; and between the j-th hidden node and the i-th
input node is denoted by Vj;. Only one hidden layer
is used here for the derivation of weight update
equation. But the number of hidden layers is not
restricted to one. One can easily extend the follow-
ing equations to the case of more than 2 hidden lay-
ers. Weight update equation between output and
hidden layer can be expressed as Eq. (3) by steepest
descent rule.

oJn
oW,

| Gp )+ ol
-nAt(x Q[ ]+ TR){;‘?W——‘;} 3)

where 1] is learning rate. The elements of response
sensitivity matrix can be obtained from the dynam-
ics of the structure, or in the case of a structure with
unknown dynamics, from Eq. (4) in which the res-
ponse, x;, is obtained by emulator neural network.

AW, =

n

ox,  x(u+Au)-x(u,)
= T @

Since the weight, W;; affects only the output u;,
Eq. (3) is further simplied to Eq. (5).

-T ox auk
AW, = -nAt x =+
kj n ( Q{auk} k“k]awkj

= nAt[)-cTQ{%‘} + rkuk]g'(netk) “fnet)) )

where
net, = Zf(net Wy ' ()

net; = ZI,.VJ.,- @)
i
A+ ) : activation function of hidden layer
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g( + ) : activation function of output layer
1; : the k-th diagonal element of R.

By introducing generalized error of output layer,
& , Eq. (5) can be written as

AW=ndfinet;) ®

where

5 = -—At{)-cTQ{;%;—c-} + rkuk)g'(netk), &)
k

The same rule is applied to the weights between
hidden and input layer to produce update equation as

o

[(9'-’13[ ]{aa‘j‘} <a’">{ }J (10)

where
= —nAt(iTQ[g-g] +u ){ }
du, Odnet, onet;

dnet, argetj avj,.
ou,  Onet, onet; |
dnet, an_.etj avj,.

:%)l“

QU
5
:.qlt 1
L’
i

duy  Onety anetj
dnet), anetj ani

g'(net)) le‘ f‘(netj)Ii
=1 &nen) W flnet)l; - an
g'(nety) WNJ»: f(netj)li

Eq. (10) can be further simplified to Eq. (12) by
introducing generalized error of hidden layer, &;.

AV, = ndyl (12)

where

2% g'(net;) WIJ f(net)
8-= ~Atx Q[ :|+u R g'(nety) Wk] f(net)
g'(nety) WN] f(net])

(13)
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Finally the training procedure of neuro-controller
is summarized as follows.

Step 1 : Initialize weights, set target cost(TC).

Step 2 : Set cost function, }T, to zero and let n=1.

Step 3 : Feed delayed signals of state and ground
acceleration as input signals to neural network.

Step 4 : Calculate network output, finet;), j=1, 2,
..., M and g(nety), k=1,2,..., N.

Step S : Apply control force u, k=1,2,..., N to
structure and obtain responses.

Step 6 : Calculate cost function, J,and
Ir, = 1,40, ;

Step 7 : Calculate response sensitivity, b—ﬂ .

Step 8 : Calculate &, k=1,2,..N and AW,; k=1,
2,..N, j=1,2,...M.

Step 9 : Calculate g, j=1,2,..M and AW, j=1,
2,..M,i=12,...,L

Step 10 : Update weights, ij « ij+Aij, Wji
< Wji+4Wj; and n=n+1.

Step 11 : If n < Tythen go to Step 3, else go to next
step.

Step 12 : If }T/> TC then go to Step 2, else stop.

3. Control Of Linear SDOF Structure

Let's consider single degree of freedom structure
excited by earthquake ground motion. The equation
of motion of the system can be written as

my+cy+ky=-myg+u (14)

where m, c, and k are mass, damping and stiffness
of the structure. Ground acceleration is denoted by
¥¢» and u is control force produced by neuro-con-
troller. Eq. (14) can be reformulated to state space
form as Eq. (15).

y o 1 |}y 0 0l
= + + 15
{y"} [-—k/m -c/mJ {y} I:l/m:|u LJ s (19
If we introduce state variable x = { yy"}T, Eq. (15)
is simplified to Eq. (16).
X = Ax+Bu+Fj, (16)

where
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A = 0 1  B= 0  F= 0
~k/m —c/m 1/m -1

(17-19)

To derive weight update equation of neuro-con-
troller, let's define weighting matrices of cost func-
tion as

Q= [‘j R=1r]
0

Then, the increment of the weights between out-
put and hidden layer can be written as

(20, 21)

where

0! L
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(a) El Centro earthquake (1940)
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(b) California earthquake (1952)
150 T T T

FLA
0 5 10 15 20
Frequency (Hz)

(c) Northridge earthquake (1994)
Fig. 3. Frequency components of ground motions.
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Fig. 4. Leaming history (linear case)

8= ~At[§cTQ{ _aa_z } + rujg‘(netl)

= —At(yg—z + qyg—z + ru)g'(netl) (23)

The subscript 1's of Eq. (22) and (23) mean that
there is only one node in the output layer of control-
ler neural network.

The increment of the weights between hidden and
input layer can be written as

AVi=ndl, 4)

- 10.0

10
Time (sec)

where

8]. = —At(iTQ[gg] +ru)g'(net) )W, f (net))
= -—At(yg% + qyg-—i +ru)g'(net )W, f(net;) (25)

For numerical simulation mass(1 kg), damping
(1.25 N/m/sec) and stiffness(39 N/m) values are set.
El Centro earthquake(1940) is used for the training
of controller. Then, two more ground motions, Cali-
fornia earthquake(1952) and Northridge earthquake
(1994), are used for test. Fig. 3 shows the frequency
components of three ground motions. The inputs to
the controller neural network are delayed signals of
structural displacement, velocity and ground accel-
eration, namely y(n-1), y(n—1) and y,(n-1).
The number of nodes in hidden layer is four. The
output is control force. Fig. 4 shows learning history
of the global cost function, }Tf. Although the con-
troller is trained in pattern learning mode which
minimizes instantaneous cost function J , the glo-
bal cost function, }Tf, is minimized.

Controlled and uncontrolled responses are shown

—  uncontrolled
— controlled

(c) Northridge earthquake
Fig. 5. Uncontrolled and controlled responses of linear structure.
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in Fig. 5. Neuro-controller trained by El Centro
earthquake can also reduce vibrations induced by
other earthquakes which are not trained. This is one
of the important characteristics of neural networks.

4. Control of Nonlinear Structure

To simulate control effect on nonlinear structure,
the following nonlinear equation of motion is con-
sidered.

my+cy+s(y,y) = ~-myg+u (26)
T T L] T
~ 30 .
<
S
.g 20} .
g 10f .
0.0 " "l 1 L
0 10 20 30 40 50
fteration number

Fig. 6. Learning history (non-linear case)

where m and ¢ are mass and damping respectively.
The nonlinear stiffness function, s(y, y), is defined
by

sy, y) = aky + (1 - a)kdw 27N

where and are positive numbers. The variablein the
above equation is governed by the following differ-
ential equation.

¥ = (a5 = Bl wl” ™M~y iwl?) (28)
where a, B, y are positive numbers and p is an odd
number. This model can simulate nonlinear hyster-
etic behavior. Detailed description of this model can
be seen in the reference [H. Irschik et al. 1998].

Each parameter is set for numerical simulation.
Namely, a=0.6, B =0.5, y =0.5, a=1.0, d=0.04 and
p=5. The system parameters, m, c, and k are the
same as in the linear model. Fig. 6 shows learning
history of cost function for nonlinear structural con-
trol. Convergence is almost the same as in the case
of linear structure. Fig. 7 shows that neuro-control-

-] 10 1‘5 20 MO 5 10 15 20
Time (sec) Time (sec)
(a) El Centro earthquake
8.0 T T T
< aop = controlled
00 —W—vv‘m
] 30k b
-G.O i 1 i l ' 1.
0 5 10 15 20 (/] -1 10 18 20
Time (sec) Time (sec)
(b) California earthquake

o
*
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L
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(c) Northridge earthquake
Fig. 7. Uncontrolled and controlled responses of nonlinear structure.
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Fig. 8. Restoring force vs. displacement

ler can also control the vibrations of nonlinear struc-
ture. Fig. 8 shows the relationship between restoring
force and displacement. Uncontrolled responses
show bilinear hysteretic behavior while controlled
responses show linear behavior with amplitudes
being reduced.

In the model based conventional optimal control,
linearization procedure is required to derive control
law of nonlinear structure. But there is no need to
linearize the structural parameter in the response
based optimal neuro-control scheme because learn-
ing algorithm is independent of whether the struc-
tural is linear or nonlinear. In addition, external
disturbance such as earthquake is neglected in the
model based optimal control. Therefore it may not
be optimal when external disturbance exists. But
neuro-controller learns to be optimal when distur-
bance exists.

5. Conclusions

A new learning algorithm for neuro-controller is
derived. There is no need to set desired response to
derive learning rule for neuro-controller. Learning
rule is extracted through minimization of instanta-
neous cost function, but it can reduce global cost
function. Three main advantages of structural con-
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trol using neural network can be summarized as fol-
lows. First, we can control the structure of unknown
dynamics through the learning of responses itself.
Second, it can be easily applied to the control of
nonlinear structure without linearization of struc-
tural parameters. Third, external disturbance can be
considered in the optimal control.

In simulation study, vibration of linear structure
can be reduced successfully. Nonlinear structure
having hysteretic characteristics behaves linearly
under control action. Only displacement and veloc-
ity is considered in this study. However, acceleration
can also be controlled if acceleration term is in-
cluded in the cost function contain acceleration
term. Future works should include the control of
multi degree of freedom structure, time delay effect
and the saturation of control force.

References

1. Bani-Hani, K. and Ghaboussi, J. (1998). “Nonlinear
Structural Control Using Neural Networks,” Journal
of Engineering Mechanics, ASCE, Vol. 124, No. 3,
pp. 319-327.

2. Chen, H. M,, Tsai, K. H,, Qi, G. Z,, Yang, J. C. and
Amini, F (1995). “Neural Networks for Structure
Control,” Journal of Computing in Civil Engineering,
ASCE, Vol. 9, No. 2, pp. 168-176.

-337-



By Ju-Tae Kim, Ju-Won Oh and In-Won Lee

3. Ghaboussi, J., and Joghataie, A. (1995). “Active Con- 6. Nguyen, D. H. and Widrow, B. (1990). “Neural Net-

trol of Structures Using Neural Networks,” Journal works for Self-learning Control Systems,” IEEE Con-

of Engineering Mechanics, ASCE, Vol. 121, No. 4, trol Systems Magazine, pp. 18-23.

pp. 555-567. 7. Tang,Y. (1996). “Active Control of SDF Systems
4. He, Y., Wu, J. (1998). “Control of Structural Seismic Using Artificial Neural Networks,” Computers & Struc-

Response by Self-recurrent Neural Networks (SRNN),” tures, Vol. 60, No. 5, pp. 695-703.

Earthquake Engineering and Structural Dynamics, 8. Venini, P. (1998). ‘“Robust Control of Uncertain Struc-

Vol. 27, pp. 641-648. tures,” Computers & Structures, Yol. 67, pp. 165-174.
5. Irschik, H., Schlacher, K. and Kugi, A. (1998). “Con- 9. Yang, J. N, Li, Z., and Vongchavalitkul, S. (1994).

trol of Earthquake Excited Nonlinear Structures “Generalization of Optimal Control Theory : linear

Using Liapunov's Theory,” Computers & Structures, and nonlinear control,” Journal of Engineering Me-

Vol. 67, pp. 83-90. chanics, ASCE, Vol. 120, No. 2, pp. 266-283.

-338 - KSCE Journal of Civil Engineering



